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Backgroud

• Patients in hospital may suffer decompensation
• Fail to detect:

• Nurses have too much workload3

• Constantly observable information is insufficient for
decision making4

• General ward is usually harder setting than ICU5

3Patricia R DeLucia, Tammy E Ott, and Patrick A Palmieri. “Performance in nursing”. In: Reviews of
human factors and ergonomics 5.1 (2009), pp. 1–40.

4Molly McNett et al. “Judgments of critical care nurses about risk for secondary brain injury”. In:
American Journal of critical care 19.3 (2010), pp. 250–260.

5Clemence Petit, Rick Bezemer, and Louis Atallah. “A review of recent advances in data analytics for
post-operative patient deterioration detection”. In: Journal of clinical monitoring and computing 32.3
(2018), pp. 391–402.
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Reactions:

• Rapid Response Team (RRT)

• Transfer to ICU

Consequences:

• Unplanned transfers, delayed transfers6 to ICU increase
mortality and length of stay7.

6Vincent Liu et al. “Adverse outcomes associated with delayed intensive care unit transfers in an
integrated healthcare system”. In: Journal of hospital medicine 7.3 (2012), pp. 224–230.

7Matthew M Churpek et al. “Association between intensive care unit transfer delay and hospital
mortality: a multicenter investigation”. In: Journal of hospital medicine 11.11 (2016), pp. 757–762.

5 / 28



DUHS
Inpatient

General De-
compensation

Prediction

Ziyuan Shen,
Mengxuan Cui

Background &
Significance

Purpose of
Study

Design &
Precedures

NEWS Imple-
mentation &
Future Plan

Backgroud

Patients show physiologic derangement 6-24 hours prior
to deterioration8.

8Michael J Rothman, Steven I Rothman, and Joseph Beals IV. “Development and validation of a
continuous measure of patient condition using the Electronic Medical Record”. In: Journal of biomedical
informatics 46.5 (2013), pp. 837–848.
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Risk Scores:

• Early Warning Score (EWS)9

• Modified Early Warning Score (MEWS)10

• National Early Warning Score (NEWS)11

• Rothman Index (RI)12

9Jennifer McGaughey et al. “Outreach and Early Warning Systems (EWS) for the prevention of intensive
care admission and death of critically ill adult patients on general hospital wards”. In: Cochrane Database of
Systematic Reviews 3 (2007).

10J Gardner-Thorpe et al. “The value of Modified Early Warning Score (MEWS) in surgical in-patients: a
prospective observational study”. In: The Annals of The Royal College of Surgeons of England 88.6 (2006),
pp. 571–575.

11Gary B Smith et al. “The ability of the National Early Warning Score (NEWS) to discriminate patients
at risk of early cardiac arrest, unanticipated intensive care unit admission, and death”. In: Resuscitation 84.4
(2013), pp. 465–470.

12Michael J Rothman, Steven I Rothman, and Joseph Beals IV. “Development and validation of a
continuous measure of patient condition using the Electronic Medical Record”. In: Journal of biomedical
informatics 46.5 (2013), pp. 837–848.
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• Poor predictive capabilities
• result in alert fatigue13

• Population-based not individual-based
• cannot fit specific patients

• Personalized models in need

13Alert Fatigue. https://psnet.ahrq.gov/primers/primer/28/alert-fatigue. Accessed: 2019-05-27.
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• Machine Learning (ML) algorithms
• prediction models
• incorporate numerous predictor variables

• Methods applied14

• Support Vector Machines (SVM)
• Random forest
• Artificial Neural Network (ANN), etc

14Clemence Petit, Rick Bezemer, and Louis Atallah. “A review of recent advances in data analytics for
post-operative patient deterioration detection”. In: Journal of clinical monitoring and computing 32.3
(2018), pp. 391–402.
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• Potentially useful input data15

• demographics
• clinical history
• physical examination
• presenting symptoms
• laboratory data
• ECG (short and long term heart rate variability measures)

15Clemence Petit, Rick Bezemer, and Louis Atallah. “A review of recent advances in data analytics for
post-operative patient deterioration detection”. In: Journal of clinical monitoring and computing 32.3
(2018), pp. 391–402.
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1 Define decompensation

2 Create a state-of-the-art of the machine learning model
applied for decompensation detection

3 Reduce deterioration and standardize response protocols
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National Early Warning Score

Table: NEWS scoring criteria as a aggregate weighted system16.

Score 3 2 1 0 1 2 3

Respiration Rate ≤ 8 9-11 12-20 21-24 ≥ 35

Oxygen Saturations ≤ 91 92-93 94-95 ≥ 96

Supplemental
Yes No

Oxygen

Systolic BP ≤ 90 91-100 101-110 111-219 ≥ 220

Heart Rate ≤ 40 41-45 51-90 91-110 111-130 ≥ 131

Temperature ≤ 35 35-36 36-38 38-39 ≥ 39

Level of
A V,P,U

Consciousness

16Ariel L Shiloh et al. “Early warning/track-and-trigger systems to detect deterioration and improve
outcomes in hospitalized patients”. In: Seminars in respiratory and critical care medicine. Vol. 37. 01.
Thieme Medical Publishers. 2016, pp. 088–095.
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• Data Source
• MIMIC III17

• Tables used: patients, icustays, chartevents, etc

• Cohort18

• exclude age less than 16
• exclude ICU stay less than 4 hours

• Features
• respiration rate, SpO2, temperature, sysBP, heart rate

• Outcome
• 30−day mortality after ICU admission

17Alistair EW Johnson et al. “MIMIC-III, a freely accessible critical care database”. In: Scientific data 3
(2016), p. 160035.

18Alistair EW Johnson and Roger G Mark. “Real-time mortality prediction in the Intensive Care Unit”. In:
AMIA Annual Symposium Proceedings. Vol. 2017. American Medical Informatics Association. 2017, p. 994.
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• Data Source
• MIMIC III
• Tables used: patients, icustays, chartevents, etc

• Cohort
• exclude age less than 16
• exclude ICU stay less than 4 hours

Table: Summary statistics of extracted patients.

Class expire flag = 1 expire flag = 0

#Features 5
#Total Samples 51996

#Samples 7526 44470
#Proportion 14.5% 85.5%
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Experimental Setting

• Data Source
• MIMIC III
• Tables used: patients, icustays, chartevents, etc

• Cohort
• exclude age less than 16
• exclude ICU stay less than 4 hours

• Features
• respiration rate, SpO2, temperature, sysBP, heart rate

• Outcome
• 30−day mortality after ICU admission

• Algorithm
• NEWS scoring system
• time window: first 24 hours during ICU stay
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Figure: Receiver operating characteristic. (Area under curve: 0.681)
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Figure: Sensitivity and specificity values plotted along thresholds.
(Optimal sensitivity: 0.695, Optimal specificity: 0.737)
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Future Work

• Refine NEWS Implementation

• Data Exploration
• Test Models

• traditional risk scores
• common machine learning algorithms

• Incorporate Real-time Techniques
• set random time points19

• Gaussian process, Recurrent Neural Network20

19Alistair EW Johnson and Roger G Mark. “Real-time mortality prediction in the Intensive Care Unit”. In:
AMIA Annual Symposium Proceedings. Vol. 2017. American Medical Informatics Association. 2017, p. 994.

20Joseph Futoma, Sanjay Hariharan, and Katherine Heller. “Learning to detect sepsis with a multitask
Gaussian process RNN classifier”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 1174–1182.
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