Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen¹, Mengxuan Cui²

Instructor: Nicholas Giroux, Anders Dohlman Department of Biomedical Engineering Duke University

> Mentor: Michael Gao Duke Institute for Health Innovation

> > August 2, 2019

²mengxuan.cui@duke.edu, Department of Biomedical Engineering, Duke University

¹ziyuan.shen@duke.edu, Department of Electrical and Computer Engineering, Duke University

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

- Background & Significance
- Data Preparation
- Feature Engineering & Modeling
- Experimental Results
- Conclusion

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

- Background & Significance
- Data Preparation
- Feature Engineering & Modeling
- Experimental Results
- Conclusion

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimental Results

Conclusion

- Patients in hospital may suffer decompensation
- Fail to detect:
 - Nurses have too much workload³
 - Constantly observable information is insufficient for decision making⁴
 - General ward is usually harder setting than ICU⁵
- Consequences:
 - Unplanned transfers, delayed transfers⁶ to ICU increase mortality and length of stay⁷

³Patricia R DeLucia, Tammy E Ott, and Patrick A Palmieri. "Performance in nursing". In: *Reviews of human factors and ergonomics* 5.1 (2009), pp. 1–40.

⁴Molly McNett et al. "Judgments of critical care nurses about risk for secondary brain injury". In: American Journal of critical care 19.3 (2010), pp. 250–260.

⁵Clemence Petit, Rick Bezemer, and Louis Atallah. "A review of recent advances in data analytics for post-operative patient deterioration detection". In: *Journal of clinical monitoring and computing* 32.3 (2018), pp. 391–402.

⁶Vincent Liu et al. "Adverse outcomes associated with delayed intensive care unit transfers in an integrated healthcare system". In: *Journal of hospital medicine* 7.3 (2012), pp. 224–230.

⁷Matthew M Churpek et al. "Association between intensive care unit transfer delay and hospital mortality: a multicenter investigation". In: *Journal of hospital medicine* 11.11 (2016), pp. 757–762.

Backgroud

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

Patients show physiologic derangement 6-24 hours prior to deterioration $^{8}. \label{eq:constraint}$

Current Strategies:

- Risk Scores
 - National Early Warning Score (NEWS)
 - Rothman Index (RI), etc
- Machine Learning (ML) algorithms
 - Logistic Regression
 - Random Forest
 - Artificial Neural Network (ANN), etc

⁸Michael J Rothman, Steven I Rothman, and Joseph Beals IV. "Development and validation of a continuous measure of patient condition using the Electronic Medical Record". In: *Journal of biomedical informatics* 46.5 (2013), pp. 837–848.

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

- Background & Significance
- Data Preparation
- Feature Engineering & Modeling
- Experimental Results
- Conclusion

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

Data Preparation

- Cohort Generation
 - Inpatient encounters
 - Adult patients
 - Emergency department to ICU transfer excluded
- Data Element Count

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

Data Element Count

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

Data Preparation

- Cohort Generation
 - Inpatient encounters
 - Adult patients
 - Emergency department to ICU transfer excluded
- Data Element Count
- Data Pulling
 - Vitals, Labs, Medications, Diagnosis
- Data Quality Assurance

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

Data Quality Assurance

Flowsheets Counts By Month

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimen Results

Conclusion

Data Quality Assurance

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

Data Preparation

- Cohort Generation
 - Inpatient encounters
 - Adult patients
 - Emergency department to ICU transfer excluded
- Data Element Count
- Data Pulling
 - Vitals, Labs, Medications, Diagnosis
- Data Quality Assurance
- Data Cleaning
 - Remove out of range data
 - Unit conversion, etc

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

- Background & Significance
- Data Preparation
- Feature Engineering & Modeling
- Experimental Results
- Conclusion

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimental Results

Conclusion

Feature Engineering

Table: Date elements used for prediction.

Data Type	Data Element Name	# Data Element	
Demographics	sex, age, race	3	
Vitals	pulse, systolic&diastolic bp, respiration rate, level of consciousness, supplemental oxygen, temperature, etc	8	
Labs	white blood cell count, platelets, glucose, sodium, albumin, creatinine, potassium, hematocrit, megnesium, blood urea nitrogen, etc	11	
Medications	antibiotics, fluids, insulin, immunosuppresent, vasopressors	5	
Diagnose	diabetes, chronic kidney disease, malignancy, myocardial infarction, HIV, chronic obstructive pulmonary disease	6	

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

Model runs every 24 hrs before ICU admission

 Data Collection Time Window: 24 hrs (Vitals, Labs, Medications)

---- Prediction Time Window: 24 hrs

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimental Results

Conclusion

Model runs every 24 hrs before ICU admission

 Data Collection Time Window: 24 hrs (Vitals, Labs, Medications)

---- Prediction Time Window: 24 hrs

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimental Results

Conclusion

Model runs every 24 hrs before ICU admission

 Data Collection Time Window: 24 hrs (Vitals, Labs, Medications)

---- Prediction Time Window: 24 hrs

compensation Prediction Ziyuan Shen, Mengxuan Cui

Background & Significance

DUHS Inpatient

General De-

Data Preparation

Feature Engineering & Modeling

Experimental Results

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimental Results

Conclusion

Feature Engineering

Table: Feature generation and transformation summary.

Data Type	Data Element Name	Coding	# Features	
Demographics	sex, age, race	Indicator, numeric	5	
Vitals	pulse, blood pressure, etc	max, min, average	20	
Vital Miss Flag		Indicator	8	
Labs	platelets, glucose, etc	average	11	
Lab Miss Flag		Indicator	11	
Medications	antibiotics, fluids, etc	Indicator	5	
Diagnose	diabetes, chronic kidney disease, etc	Indicator	6	
Days to admission		numeric	1	
Total			67	

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimental Results

- Background & Significance
- Data Preparation
- Feature Engineering & Modeling
- Experimental Results
- Conclusion

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimental Results

Conclusion

Experimental Setting

- Data Source: Duke data
- Outcome: 24 hour ICU admission
- Exclusion:
 - floor/stepdown stay less than 24 hours
 - floor/stepdown stay more than 30 days

Table: Summary statistics of design matirx.

Class	ICU admission flag=1	ICU admission flag=0	
#Features	6	7	
#Total Samples	870	107	
#Samples	11300	858807	
Proportion	1.3%	98.7%	

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparatior

Feature Engineering & Modeling

Experimental Results

Conclusion

Model Training

- Preprocessing
 - z-Scoring
- Imbalance Data
 - downsampling
- Algorithm
 - Logistic Regression
 - Random Forest
 - XGBoost
 - Artificial Neural Network
- Optimization
 - parameter search

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimental Results

Conclusion

Baseline Model: National Early Warning Score

Table: NEWS scoring criteria as a aggregate weighted system⁹.

Score	3	2	1	0	1	2	3
Respiration Rate	≤ 8		9-11	12-20		21-24	\geq 35
Oxygen Saturations	\leq 91	92-93	94-95	\geq 96			
Supplemental		Yes		No			
Oxygen							
Systolic BP	\leq 90	91-100	101-110	111-219			\geq 220
Heart Rate	\leq 40		41-45	51-90	91-110	111-130	≥ 131
Temperature	\leq 35		35-36	36-38	38-39	\geq 39	
Level of				۸			VPII
Consciousness				~			V,I,O

⁹Ariel L Shiloh et al. "Early warning/track-and-trigger systems to detect deterioration and improve outcomes in hospitalized patients". In: *Seminars in respiratory and critical care medicine*. Vol. 37. 01. Thieme Medical Publishers. 2016, pp. 088–095.

Ziyuan Shen, Mengxuan Cui

Experimental Results

ROC

False Positive Rate

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparatior

Feature Engineering & Modeling

Experimental Results

Conclusion

Precision-Recall

Score Comparison

DUHS Inpatient General Decompensation Prediction

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

Background & Significance

- Data Preparation
- Feature Engineering & Modeling
- Experimental Results
- Conclusion

Ziyuan Shen, Mengxuan Cui

Background & Significance

Data Preparation

Feature Engineering & Modeling

Experimenta Results

Conclusion

Thank you for listening!

Q&A

